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A game with 151 byte stack
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Inspiration

• Programming challenge: write a game with tiny memory constraints 

• TI-83+ games: Phoenix 

• 64 x 96 Pixels, 24 KB RAM 

• Z80 Processor, 6 MHz, 1976



Inspiration



Arduboy

• ATMega32u4 8-bit 8Mhz RISC microcontroller 

• 32 X 8-bit registers 

• 2.5 KB RAM, 32 KB Flash ROM 

• No branch prediction, no pipelining 

• 128x64px 1-bit OLED, 40Hz update 

• Based on Arduino - C / C++ / Processing, IDE
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Drawing?
Monochrome 0.96" 128x64 OLED Graphic Display



Drawing?



First Challenge:

“Global variables use 1197 bytes (46%) of dynamic memory, leaving 1363 
bytes for local variables. Maximum is 2560 bytes.” 

“No-code” binary is 149 bytes 

Arduboy2 takes 1,048 bytes!

🤯



Easy fix

• Slim Arduboy2 lib down 

• Clone repo 

• Remove unnecessary text rendering 

• Personally offended 

• Slimmed down to ~500 bytes 

• ~2,000 bytes left!



Second challenge:

• Arduino IDE… 

• Awful text editor: switch to Vim / TextEdit? 

• Iteration time is about 30 seconds 

• Not too bad, but has no debugger, and flakey serial I/O
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Harder fix:

• Build an AppKit app that “simulates” the platform

Power-on

Setup 

Arduboylib Setup

Update Loop 

Arduboylib Update

App Launch

Setup 

ArduboyShim Setup

Update Loop 

Arduboy Update: 
1. Draw to NSView 
2. Check NSEvents NSTimer

Game Update: 
1. Game Logic 

2. Call draw shims 
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Harder fix:

• 3 second iteration time 

• And a debugger! 

• … but no memory measurement 😔



Third Challenge:

• How can I auto-create the Arduino project? 

• Get quick checks on memory usage 

• Makes sure I don’t use a C++ feature Arduino doesn’t support, etc.
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Sprites!
Part one: encoding

• Challenge 1: size! 

• 13 x 9 pixels, 4 bytes each = 468 bytes 

• That’s nearly 25% of all game-data, um no! 

• 13 x 9 pixels, 1 byte each = 117 bytes 

• ~6%, better! 

• 13 x 9 pixels, 1 bit each = 117 bits, 15 bytes! 

• 0.75% of game data, GREAT!
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Sprites!
Part deux: automation?

• Challenge 2: asset generation! 

• For each image… 

• Load a CGImage, get raw bytes out 

• Build a bit-packed array 

• Emit C array



Sprites!
Part deux: automation?



Fifth & Final Challenge:



Make the game!
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• Use smallest integer possible: uint8_t, uint16_t, etc 

• Avoid ambiguity: `char` isn’t always byte, `int` is different on arm64 vs. 
atmega32 

• Play with `constexpr`; depends on CPU ISA encoding 

• Avoid any dynamic allocation: make max stack depth known 

• Pre-allocate all runtime game data on the stack 

• Speed: Only use integers, atmega32 doesn’t have FPU 

• Consider fixed-point arithmetic 

• Consider bit-packing, but trade-offs 

Game Architecture
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Game Architecture

Missing bit-pack optimization!
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Final Stats

• 22x Sprites 

• 1x Font Atlas: 6 x 16 glyphs 

• 18x levels 

• 6 upgrades: 

• Ship / health upgrades, Rate-of-fire upgrades 

• 5 weapon types, Missiles 

• Shield upgrades, 2 drones 

• 1x Konami Code easter egg



Final Stats

• Game.h: 488 lines 

• Game.cpp: 1,596 lines 

• GameSprites.h: 166 lines, 1,343 bytes of sprite data 

• GameFont.h: 207 lines, 576 bytes of sprite data 

• Final binary: 

• 2,385 bytes for loaded executable, 151 bytes left for stack (93% usage) 

• 18,656 SRAM bundled executable (65% usage)



Questions?

Thanks for watching!


