
Arduinix

Jeremy Bridon, Spring 2024

A game with 151 byte stack



Inspiration



Inspiration

• Programming challenge: write a game with tiny memory constraints 

• TI-83+ games: Phoenix 

• 64 x 96 Pixels, 24 KB RAM 

• Z80 Processor, 6 MHz, 1976



Inspiration



Arduboy

• ATMega32u4 8-bit 8Mhz RISC microcontroller 

• 32 X 8-bit registers 

• 2.5 KB RAM, 32 KB Flash ROM 

• No branch prediction, no pipelining 

• 128x64px 1-bit OLED, 40Hz update 

• Based on Arduino - C / C++ / Processing, IDE



Normal runtime

Power-on

Setup 

Arduboylib Setup

Update Loop 

Arduboylib Update



Normal runtime

Power-on

Setup 

Arduboylib Setup

Update Loop 

Arduboylib Update



Normal runtime

Power-on

Setup 

Arduboylib Setup

Update Loop 

Arduboylib Update



Drawing?
Monochrome 0.96" 128x64 OLED Graphic Display



Drawing?



First Challenge:

“Global variables use 1197 bytes (46%) of dynamic memory, leaving 1363 
bytes for local variables. Maximum is 2560 bytes.” 

“No-code” binary is 149 bytes 

Arduboy2 takes 1,048 bytes!

🤯



Easy fix

• Slim Arduboy2 lib down 

• Clone repo 

• Remove unnecessary text rendering 

• Personally offended 

• Slimmed down to ~500 bytes 

• ~2,000 bytes left!



Second challenge:

• Arduino IDE… 

• Awful text editor: switch to Vim / TextEdit? 

• Iteration time is about 30 seconds 

• Not too bad, but has no debugger, and flakey serial I/O



Harder fix:

• Build an AppKit app that “simulates” the platform

Power-on

Setup 

Arduboylib Setup

Update Loop 

Arduboylib Update



Harder fix:

• Build an AppKit app that “simulates” the platform

Power-on

Setup 

Arduboylib Setup

Update Loop 

Arduboylib Update

App Launch

Setup 

ArduboyShim Setup

Update Loop 

Arduboy Update NSTimer



Harder fix:

• Build an AppKit app that “simulates” the platform

Power-on

Setup 

Arduboylib Setup

Update Loop 

Arduboylib Update

App Launch

Setup 

ArduboyShim Setup

Update Loop 

Arduboy Update: 
1. Draw to NSView 
2. Check NSEvents NSTimer

Game Update: 
1. Game Logic 

2. Call draw shims 



Harder fix:



Harder fix:



Harder fix:



Harder fix:



Harder fix:



Harder fix:

• 3 second iteration time 

• And a debugger! 

• … but no memory measurement 😔



Third Challenge:

• How can I auto-create the Arduino project? 

• Get quick checks on memory usage 

• Makes sure I don’t use a C++ feature Arduino doesn’t support, etc.



Fourth Challenge:

• Sprites!



Fourth Challenge:

• Sprites!



Sprites!
Part one: encoding

• Challenge 1: size! 

• 13 x 9 pixels, 4 bytes each = 468 bytes 

• That’s nearly 25% of all game-data, um no! 

• 13 x 9 pixels, 1 byte each = 117 bytes 

• ~6%, better! 

• 13 x 9 pixels, 1 bit each = 117 bits, 15 bytes! 

• 0.75% of game data, GREAT!



Sprites!
Part one: encoding



Sprites!
Part deux: automation?



Sprites!
Part deux: automation?



Sprites!
Part deux: automation?

• Challenge 2: asset generation! 

• For each image… 

• Load a CGImage, get raw bytes out 

• Build a bit-packed array 

• Emit C array



Sprites!
Part deux: automation?



Fifth & Final Challenge:



Make the game!



Game Architecture



Game Architecture



Game Architecture



Game Architecture



Game Architecture

Sus



Game Architecture

Static Const

Code

Static Mutable



Game Architecture

Static Const

Code

Static Mutable

String buffers

Function frame

String Literals

Variables



Game Architecture

Static Const

Code

Static Mutable

String buffers

Function frame

String Literals

Variables

Problem 1

Problem 2



• Use smallest integer possible: uint8_t, uint16_t, etc 

• Avoid ambiguity: `char` isn’t always byte, `int` is different on arm64 vs. 
atmega32 

• Play with `constexpr`; depends on CPU ISA encoding 

• Avoid any dynamic allocation: make max stack depth known 

• Pre-allocate all runtime game data on the stack 

• Speed: Only use integers, atmega32 doesn’t have FPU 

• Consider fixed-point arithmetic 

• Consider bit-packing, but trade-offs 

Game Architecture



Game Architecture



Game Architecture

Missing bit-pack optimization!



Game Architecture



Game Architecture



Game Architecture



Game Architecture



PROGMEM



Game Architecture



Game Architecture



Game Architecture



Game Architecture



Game Architecture



Game Architecture



Game Architecture



Final Stats

• 22x Sprites 

• 1x Font Atlas: 6 x 16 glyphs 

• 18x levels 

• 6 upgrades: 

• Ship / health upgrades, Rate-of-fire upgrades 

• 5 weapon types, Missiles 

• Shield upgrades, 2 drones 

• 1x Konami Code easter egg



Final Stats

• Game.h: 488 lines 

• Game.cpp: 1,596 lines 

• GameSprites.h: 166 lines, 1,343 bytes of sprite data 

• GameFont.h: 207 lines, 576 bytes of sprite data 

• Final binary: 

• 2,385 bytes for loaded executable, 151 bytes left for stack (93% usage) 

• 18,656 SRAM bundled executable (65% usage)



Questions?

Thanks for watching!


